3.1055 \(\int \frac {\cos (c+d x) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(a+b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=359 \[ \frac {2 a \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{3 b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac {2 \left (-8 a^3 C+2 a^2 b B+a b^2 (A+9 C)-3 b^3 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^3 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {2 \sin (c+d x) \left (-5 a^4 C+2 a^3 b B+a^2 b^2 (A+9 C)-6 a b^3 B+3 A b^4\right )}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (-8 a^4 C+2 a^3 b B+a^2 b^2 (A+15 C)-6 a b^3 B+3 b^4 (A-C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^3 d \left (a^2-b^2\right )^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \]

[Out]

2/3*a*(A*b^2-a*(B*b-C*a))*sin(d*x+c)/b^2/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)+2/3*(3*A*b^4+2*a^3*b*B-6*a*b^3*B-5
*a^4*C+a^2*b^2*(A+9*C))*sin(d*x+c)/b^2/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)-2/3*(2*a^3*b*B-6*a*b^3*B+3*b^4*(A-
C)-8*a^4*C+a^2*b^2*(A+15*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1
/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/b^3/(a^2-b^2)^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2/3*(2*a^2*b*B-3*
b^3*B-8*a^3*C+a*b^2*(A+9*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1
/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/b^3/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.63, antiderivative size = 359, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3031, 3021, 2752, 2663, 2661, 2655, 2653} \[ \frac {2 \sin (c+d x) \left (a^2 b^2 (A+9 C)+2 a^3 b B-5 a^4 C-6 a b^3 B+3 A b^4\right )}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \cos (c+d x)}}+\frac {2 a \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{3 b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac {2 \left (2 a^2 b B-8 a^3 C+a b^2 (A+9 C)-3 b^3 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^3 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (a^2 b^2 (A+15 C)+2 a^3 b B-8 a^4 C-6 a b^3 B+3 b^4 (A-C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^3 d \left (a^2-b^2\right )^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(-2*(2*a^3*b*B - 6*a*b^3*B + 3*b^4*(A - C) - 8*a^4*C + a^2*b^2*(A + 15*C))*Sqrt[a + b*Cos[c + d*x]]*EllipticE[
(c + d*x)/2, (2*b)/(a + b)])/(3*b^3*(a^2 - b^2)^2*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*(2*a^2*b*B - 3*b^
3*B - 8*a^3*C + a*b^2*(A + 9*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(3*
b^3*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) + (2*a*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(3*b^2*(a^2 - b^2)*d*
(a + b*Cos[c + d*x])^(3/2)) + (2*(3*A*b^4 + 2*a^3*b*B - 6*a*b^3*B - 5*a^4*C + a^2*b^2*(A + 9*C))*Sin[c + d*x])
/(3*b^2*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3031

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 - a*b*B + a^2*C)*
Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b^2*f*(m + 1)*(a^2 - b^2)), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b
^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m +
 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{5/2}} \, dx &=\frac {2 a \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 \int \frac {-\frac {3}{2} b \left (A b^2-a (b B-a C)\right )+\frac {1}{2} \left (2 a^2 b B-3 b^3 B-2 a^3 C+a b^2 (A+3 C)\right ) \cos (c+d x)+\frac {3}{2} b \left (a^2-b^2\right ) C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{3 b^2 \left (a^2-b^2\right )}\\ &=\frac {2 a \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 \left (3 A b^4+2 a^3 b B-6 a b^3 B-5 a^4 C+a^2 b^2 (A+9 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {4 \int \frac {-\frac {1}{4} b^2 \left (a^2 b B+3 b^3 B+2 a^3 C-2 a b^2 (2 A+3 C)\right )+\frac {1}{4} b \left (2 a^3 b B-6 a b^3 B+3 b^4 (A-C)-8 a^4 C+a^2 b^2 (A+15 C)\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{3 b^3 \left (a^2-b^2\right )^2}\\ &=\frac {2 a \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 \left (3 A b^4+2 a^3 b B-6 a b^3 B-5 a^4 C+a^2 b^2 (A+9 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (2 a^2 b B-3 b^3 B-8 a^3 C+a b^2 (A+9 C)\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{3 b^3 \left (a^2-b^2\right )}-\frac {\left (2 a^3 b B-6 a b^3 B+3 b^4 (A-C)-8 a^4 C+a^2 b^2 (A+15 C)\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{3 b^3 \left (a^2-b^2\right )^2}\\ &=\frac {2 a \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 \left (3 A b^4+2 a^3 b B-6 a b^3 B-5 a^4 C+a^2 b^2 (A+9 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}-\frac {\left (\left (2 a^3 b B-6 a b^3 B+3 b^4 (A-C)-8 a^4 C+a^2 b^2 (A+15 C)\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{3 b^3 \left (a^2-b^2\right )^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (\left (2 a^2 b B-3 b^3 B-8 a^3 C+a b^2 (A+9 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{3 b^3 \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\\ &=-\frac {2 \left (2 a^3 b B-6 a b^3 B+3 b^4 (A-C)-8 a^4 C+a^2 b^2 (A+15 C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \left (2 a^2 b B-3 b^3 B-8 a^3 C+a b^2 (A+9 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^3 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 a \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 \left (3 A b^4+2 a^3 b B-6 a b^3 B-5 a^4 C+a^2 b^2 (A+9 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.20, size = 323, normalized size = 0.90 \[ \frac {2 \left (\frac {b \sin (c+d x) \left (b \cos (c+d x) \left (-5 a^4 C+2 a^3 b B+a^2 b^2 (A+9 C)-6 a b^3 B+3 A b^4\right )+a \left (-4 a^4 C+a^3 b B+2 a^2 b^2 (A+4 C)-5 a b^3 B+2 A b^4\right )\right )}{\left (a^2-b^2\right )^2}+\frac {(-a-b \cos (c+d x)) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left (\left (-8 a^4 C+2 a^3 b B+a^2 b^2 (A+15 C)-6 a b^3 B+3 b^4 (A-C)\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-a F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )\right )-b^2 \left (2 a^3 C+a^2 b B-2 a b^2 (2 A+3 C)+3 b^3 B\right ) F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )\right )}{(a-b)^2 (a+b)^2}\right )}{3 b^3 d (a+b \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(((-a - b*Cos[c + d*x])*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*(-(b^2*(a^2*b*B + 3*b^3*B + 2*a^3*C - 2*a*b^2*(2
*A + 3*C))*EllipticF[(c + d*x)/2, (2*b)/(a + b)]) + (2*a^3*b*B - 6*a*b^3*B + 3*b^4*(A - C) - 8*a^4*C + a^2*b^2
*(A + 15*C))*((a + b)*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - a*EllipticF[(c + d*x)/2, (2*b)/(a + b)])))/((a -
 b)^2*(a + b)^2) + (b*(a*(2*A*b^4 + a^3*b*B - 5*a*b^3*B - 4*a^4*C + 2*a^2*b^2*(A + 4*C)) + b*(3*A*b^4 + 2*a^3*
b*B - 6*a*b^3*B - 5*a^4*C + a^2*b^2*(A + 9*C))*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2))/(3*b^3*d*(a + b*Cos
[c + d*x])^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.92, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \cos \left (d x + c\right )^{3} + B \cos \left (d x + c\right )^{2} + A \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^3 + B*cos(d*x + c)^2 + A*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)/(b^3*cos(d*x + c)^3 +
 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 12.89, size = 963, normalized size = 2.68 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b^3/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(B*b*Ell
ipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-3*C*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+C*Ellipti
cE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-C*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b)+2/b^3*(A*b^2
-2*B*a*b+3*C*a^2)/sin(1/2*d*x+1/2*c)^2/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)/(a^2-b^2)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a
+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2
*c),(-2*b/(a-b))^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a-(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b+2*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*
x+1/2*c)^2)-2*a*(A*b^2-B*a*b+C*a^2)/b^3*(1/6/b/(a-b)/(a+b)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)
*sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2+1/2/b*(a-b))^2+8/3*b*sin(1/2*d*x+1/2*c)^2/(a-b)^2/(a+b)^2*c
os(1/2*d*x+1/2*c)*a/(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)+(3*a-b)/(3*a^3+3*a^2*b-3*a*b
^2-3*b^3)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b
+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4/3*a/(a-b)/(a+b)^2*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d
*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))
^(1/2)))))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\cos \left (c+d\,x\right )\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(5/2),x)

[Out]

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________